An adaptive level set method for interactive segmentation of intracranial tumors.

نویسندگان

  • Marc Droske
  • Bernhard Meyer
  • Martin Rumpf
  • Carlo Schaller
چکیده

BACKGROUND Meaningful segmentation of intracranial lesions can be of assistance for planning open navigated microneurosurgical procedures, as well as for radiotherapy. Meaningful segmentation, however, may be hampered by lack of computational power. The respective segmentation method should be based on state-of-the-art mathematical tools, and it should be suitable for real applications. METHODS A three-dimensional computational method for interactive segmentation of intracranial tumors is presented. It is based on a front propagation method, in which the evolving front gradually approaches the boundary of a given segment. It generates and remembers the entire evolution of the interface. The segment boundary is chosen from a one parameter family. User interaction is realized by selecting "seed points" inside the object/lesion. External evolution velocity regulates the segmentation process, while approaching the boundary. Adaptively resolved grids ensure computational efficiency for larger segments. The resolution is steered by an image-based indicator, which allows coarse representation of the solution in low-frequency regions, but high resolution along suspected edges of the image. RESULTS Model-based segmentation was performed on the imaging data of n = 12 patients and the results compared with manual segmentation of the same tumors. The method allowed for basic segmentation in all tumors <3 minutes. This increased 2-4 fold in four irregular tumors, where discrepancies existed in comparison with manually performed segmentation. DISCUSSION The implicit formulations of this method establish methodical and topological flexibility in three dimensions. It is thus suitable for the segmentation of objects with non-sharp boundaries such as intracranial tumors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing an Algorithm for Cancerous Tissue Segmentation Using Adaptive K-means Cluttering and Discrete Wavelet Transform

Background: Breast cancer is currently one of the leading causes of death among women worldwide. The diagnosis and separation of cancerous tumors in mammographic imagesrequire accuracy, experience and time, and it has always posed itself as a major challenge to the radiologists and physicians. Objective: This paper proposes a new algorithm which draws on discrete wavelet transform and adaptive ...

متن کامل

An Adaptive Segmentation Method Using Fractal Dimension and Wavelet Transform

In analyzing a signal, especially a non-stationary signal, it is often necessary the desired signal to be segmented into small epochs. Segmentation can be performed by splitting the signal at time instances where signal amplitude or frequency change. In this paper, the signal is initially decomposed into signals with different frequency bands using wavelet transform. Then, fractal dimension of ...

متن کامل

An Adaptive Segmentation Method Using Fractal Dimension and Wavelet Transform

In analyzing a signal, especially a non-stationary signal, it is often necessary the desired signal to be segmented into small epochs. Segmentation can be performed by splitting the signal at time instances where signal amplitude or frequency change. In this paper, the signal is initially decomposed into signals with different frequency bands using wavelet transform. Then, fractal dimension of ...

متن کامل

A Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network

Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...

متن کامل

Comparison Between Unsupervised and Supervise Fuzzy Clustering Method in Interactive Mode to Obtain the Best Result for Extract Subtle Patterns from Seismic Facies Maps

Pattern recognition on seismic data is a useful technique for generating seismic facies maps that capture changes in the geological depositional setting. Seismic facies analysis can be performed using the supervised and unsupervised pattern recognition methods. Each of these methods has its own advantages and disadvantages. In this paper, we compared and evaluated the capability of two unsuperv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurological research

دوره 27 4  شماره 

صفحات  -

تاریخ انتشار 2005